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Path integral quantum transition state theory (PI-QTST) and its modified versions are studied for an asymmetric
Eckart barrier and a metastable potential. For low temperatures, it is confirmed that the PI-QTST overestimates
the reaction rate, as do other quantum activated rate theories. A simple correction method which modifies the
product part of the potential such that it is bounded by the potential reactant well bottom energy is then
implemented. The resulting tests for the asymmetric Eckart barrier and a cubic metastable potential demonstrate
that this method gives a reliable estimate of the reaction rate for the model systems considered. For an
understanding of the source of the error in the usual PI-QTST method and of the underlying mechanism of
the correction, a detailed semiclassical analysis is then performed. This analysis demonstrates that the modified
PI-QTST of Cao and Voth [Cao, J.; Voth, G. A.J. Chem. Phys. 1996, 105, 6856] becomes equivalent to the
semiclassical bounce theory at low temperature only if a certain subset of classical paths is used. It is therefore
concluded that the errors originate from the inappropriate mixing-in of paths associated with the product
bound states in numerical path integral evaluations. These product paths are eliminated by the suggested
correction method, thus rendering PI-QTST much more accurate for strongly asymmetric or metastable systems
at low temperatures.

I. Introduction

From a molecular viewpoint, activated reaction events1-9 are
rare phenomena, and the probability that the system will visit
the reactive zone, as determined by the free energy barrier,
accounts for the dominant contribution to the reaction rate.
Transition state theory (TST),10 in this sense, amounts to the
simplest approximation. It plays an important practical role in
estimating the reaction rates in various systems and is indeed
amenable to further improvement.8,9 In generalizing TST to the
quantum case,1-7,11-13 however, one is confronted with some
conceptual difficulties due to quantum dispersion and tunneling
even in the simplest generic case of a single adiabatic barrier
crossing.

Only in the two limiting cases of high and low temperature
does the quantum description become simplified. In the former
case, one can proceed in close analogy with classical picture
by including a small amount of quantum dispersion and barrier
top tunneling only.14,15In the zero temperature limit, within the
path integral formalism,16-19 one can identify with the reactant
state those paths localized near the bottom of the reactant
potential well. Barrier-crossing events are associated with paths
which traverse from the reactant region to the product. Within
the semiclassical approximation, the resulting rate can be
expressed in terms of the properties of one (or more) periodic
orbits on the inverted potential.20-27

The approaches used in the two limiting situations above are
rather different, though the two results can be formally unified
in a single mathematical expression.24,25In this context, Gillan’s
observation28 and the ensuing work of Voth, Chandler, and

Miller (VCM) 29 provided an important contribution. Gillan
found that known reaction rate expressions for a symmetric
double well potential coupled to a harmonic bath can be recast
into classical-like forms employing the path centroid defined
within the imaginary time path integral formalism.16-19 Later,
VCM carried out a more rigorous analysis, the outcomes of
which are the path integral quantum TST (PI-QTST), a rigorous
derivation of some of Gillan’s results, and the idea of supple-
menting the approximate reaction rate with additional exact
quantum dynamics calculations.

Subsequent tests and analyses7,30-35 have shown that PI-QTST
is very accurate in the high temperature limit and near the so
called crossover temperature in which the dynamics begins to
be dominated by tunneling. Below the crossover, it reproduces
the dominant exponential term for symmetric or weakly
asymmetric potentials, and it can be improved with a modifica-
tion of the preexponential factor.36,37Recent work has focused
on finding a more universal expression for this factor and also
on the extension of the theory to nonadiabatic cases.36,38-40 On
the other hand, applications of the PI-QTST to strongly
exothermic or metastable potentials at low temperature can be
problematic. The reaction rate appears to be overestimated by
orders of magnitude or, in fact, may not be defined in some
cases.33,41,42The reason for this has been explained in a way
analogous to classical multidimensional TST. In the general
function space of cyclic paths, the centroid used in PI-QTST,
the zeroth mode of the path, belongs to a specific class of
dividing surfaces. For the case of asymmetric potentials, the
optimal dividing surface seems to be rotated42 in a direction
different from any of the surfaces corresponding to a fixed
centroid and the use of the centroid coordinate results in
overestimation of the reaction rate. On the basis of this idea,
Cao and Voth (CV)36 and Mills et al.42 independently developed
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schemes for identifying the optimum surface in the general
function space of paths, one of which has been applied to some
systems.42 However, this approach may limit the application of
the theory to small systems, so a more practical solution that
does not abandon the practical merits of PI-QTST is still
desirable.

Recently, two new approaches to a QTST have also
appeared.43-45 These start from an expression for the flux-side
correlation function46 and then invoke mathematically or physi-
cally motivated approximations. These new QTSTs produce
results comparable to those of PI-QTST when tested for the
symmetric Eckart barrier. For the case of asymmetric Eckart
barrier, a detailed comparison has not been made, although the
new theories have also been reported to perform unsatisfactorily.

The present paper was thus motivated by the incomplete
understanding of the performance of PI-QTST for the cases of
asymmetric and metastable potentials at low temperature. The
first objective is to calculate the reaction rates based on PI-
QTST for the asymmetric Eckart barrier and to compare these
with published results for a collection of different QTSTs. The
results presented show that, although the PI-QTST performs
worse than the semiclassical bounce theory20-27 below the cross-
over temperature, it is somewhat better than other simple
QTSTs. However, these data again confirm that one should be
cautious in applying the theory to asymmetric or metastable
potentials at low temperature. The second objective is then to
provide a simple, mathematically motivated, correction proce-
dure to PI-QTST to render it again quantitatively accurate for
such systems.

This paper is organized as follows: In section II, the PI-
QTST and its improved versions using different preexponential
factors are summarized and the results of their application to
the asymmetric Eckart barrier are presented. In section III, a
practical remedy is suggested for the strongly asymmetric barrier
problem and then tested for the asymmetric Eckart barrier and
for a cubic metastable potential. In section IV, a semiclassical
analysis is made of the centroid density, which illuminates its
relation with the semiclassical bounce theory and the sources
of the errors involved in PI-QTST for strongly asymmetric
system at low temperature. Section V provides concluding
remarks.

II. Path Integral Transition State Theory Applied to An
Asymmetric Eckart Barrier

A. Formal Expressions.The quantum partition function in
the path integral formalism can be recast into the following
classical-like form:16,47,48

whereâ is the inverse temperature in units of the Boltzmann
constant,m is the mass, and the “excess” centroid density
beyond the free particle limit along the reaction coordinate is
given by the path integration over all constrained cyclic paths
such that

with x0 ) ∫0
âp dτ x(τ)/(âp). In eq 2,D[x(τ)] is the usual path

measure16-19 andS[x(τ)] is the Euclidean action functional,16-19

defined as

where x̆(τ) is the derivative ofx(τ) with respect toτ. A one-
dimensional notation is used throughout for simplicity. Note
that, as opposed to some of our earlier papers, the centroid
potential of mean forceVc(xc) is defined here to be the excess
centroid free energy over the free particle limit. The notation
“Fc(xc)” in this paper will also refer to the excess centroid density
beyond the free particle limit, which is the important contribution
to the rate constant.

The rate expression in PI-QTST,7,29 expressed askPI-QTST

hereafter, has the following classical form:

wherexc
/ corresponds to the barrier position ofVc andZR is the

reactant state partition function. This rate expression is, in fact,
the variational version of PI-QTST. At high temperature and
for the inverted harmonic barrier, this expression has been shown
to yield the exact high temperature result. Near or below the
crossover temperature, however, eq 4 begins to underestimate
the reaction rate for the symmetric Eckart barrier. Cao and Voth
(CV)36 have provided a unified expression for the preexponential
factor which improves on this feature of the theory. They used
Affleck’s well-known correction factor24 in a way consistent
with the known high temperature result, and based on the
assumption that the free energy saddle point in the general space
of paths can be well represented by the centroid coordinate
alone. The resulting expression is given by

whereωb is the frequency of the inverted harmonic function
fitting the barrier top ofV(x) andωc,b is that fitting the barrier
top of Vc(xc).

More recently, Ramirez37 suggested a different uniform
expression for the preexponential factor based on an empirical
relation which seems to work well for the symmetric Eckart
barrier. It is given by

wherexc
/ is again understood as the position of the barrier top

of Vc andEc(xc) corresponds to an average energy for a fixed
centroid minus 1/(2â), the Virial form49,50of which is given by

where〈‚‚‚〉c means average over the centroid constrained path
integral of eq 2.

B. Results. The reaction rates were calculated for the
following asymmetric Eckart barrier:

with V(-∞) ) 0, V(∞) ) A ) -18/π, B ) 54/π, and a )

Z ≡ Tr {e-âĤ} ) x m

2πp2â
∫ dxcFc(xc) (1)

Fc(xc) ≡ e-âVc(xc) )

x2πp2â
m ∫ ‚‚‚ ∫ D[x(τ)] δ(xc - x0) exp{-S[x(τ)]/p} (2)

S[x(τ)] ) ∫0

âp
dτ {m

2
x̆(τ)2 + V(x(τ))} (3)

kPI-QTST ) 1
2πâp

e-âVc(xc
/)

ZR
)

(2πmâ)-1/2

∫-∞
xc
/

dxce
-âVc(xc)

e-âVc(xc
/) (4)

kCV ) min ( ωb

ωc,b
,

2π
ωc,bâp)kPI-QTST (5)

kR ) (Vc(xc
/)

Ec(xc
/))1/2

kPI-QTST (6)

Ec(xc) ) 〈12 (x(τ) - xc)V′(x(τ)) + V(x(τ))〉c
(7)

V(x) ) A

1 + e-ax
+ B

4 cosh2(ax/2)
(8)
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x3π/4. Natural units have been chosen such thatp ) ωb ) m
) 1. These choices of parameters and units result in a classical
barrier height ofV* ) 6/π and a classical barrier location of
q* ) - ln 2/a. The quantity to be compared isΓ, the ratio of
the quantum rate to the classical rate. Thus, calculation of the
reaction rates requires the determination ofVc(xc) defined by
eq 2, and the average centroid energy function given by eq 7 if
Ramirez’s expression for the rate is used. These calculations
can be performed using any path integral simulation method,
along with the imposition of the centroid constraint.

The method of staging path integral molecular dynamics
(SPIMD) was chosen in the present work.51 The number of
quasiparticles,P ) 25â, gave converged thermodynamic data
for all the values ofâ tested. The number of primary quasi-
particles used was 10 for all temperatures, and each intervening
segment consisting ofP/10-1 quasiparticles was transformed
into staging coordinate. To ensure canonical sampling, a Nose´-
Hoover chain52 of length 4 was attached to each transformed
degree of freedom. The use of this thermostat in the presence
of the centroid constraint was made possible using modified
NHC equations of motion,53 which account for the constrained
degree of freedom correctly, and by employing one of the
corresponding simple reversible velocity Verlet type algorithms,
VV-3.53 The mass of the primary quasiparticle was chosen to
be P/10, the mass of thekth (k ) 1, ‚‚‚, P/10-1 ) staging
transformed coordinate was chosen to beP2(k + 1)/(100k), and
the Nose´ mass was set to 0.012P. A time step of 6.32× 10-4P
was used in the simulation.

The centroid mean force was calculated using

while eq 7 was used for the average centroid energy. These
quantities were calculated at successive centroid positions from
-12 to 12, in increments of 0.2. At each given value ofxc, the
system was equilibrated for 105 steps and then sampled for 2
× 106 steps. The centroid potential of mean forceVc(xc) was
then calculated by the integration of the centroid mean force,
using cubic interpolation and quadratic extrapolation where
necessary.

Figure 1 shows the calculated centroid potentials of mean
force and the average centroid energies for six different values
of â. As â increases (temperature decreases), the maximum
value ofVc decreases and its position shifts toward the reactant
side. Table 1 presents the ratioΓ for various versions of PI-
QTST, identified by subscript. In calculating the reaction rate,
significant figures were kept to three and all the calculatedVc’s
were rounded off up to the second decimal point. The results
of other QTSTs are also shown, along with the results due to
the semiclassical bounce method calculated using the standard
procedure.20,24,54In this table,ΓHA represents the QTST2 results
by Hansen and Andersen,44 ΓPL represents the QTST results by
Pollak and Liao,45 andΓSPL is the best perturbation expansion
results taken from Table 3 of the paper by Shao et al.55 The
table shows that PI-QTST gives results comparable toΓSPL, a
complicated variational perturbation theory, thus implying that
the PI-QTST includes a substantial part of the nontrivial
anharmonic contributions. The expression of CV improves these
results further, remaining quite close to the exact ones. On the
other hand, the expression of Ramirez seems to worsen the
estimation of the PI-QTST, which indicates that his present
empirical relation may not have much generality beyond the
symmetric limit.

It is seen that PI-QTST overestimates the rate at lower
temperature, while the CV modification is most successful.
However, it is still in error by almost a factor of two atâ ) 12.
These results are in contrast to those of the semiclassical bounce
theory which somewhat underestimates the exact rate, but
achieves agreement to within a few percent. This situation seems
to contradict the analysis by VCM,29 which showed that the
semiclassical limit of PI-QTST can be made equivalent to the
bounce theory by a modification of the preexponential factor
only. Indeed PI-QTST performs quite well for the case of the
symmetric Eckart barrier, but not as well for the asymmetric
case.

III. Simple Correction Method

The data calculated in section II are consistent with the
previous findings regarding the performance of PI-QTSTs for
asymmetric or metastable potentials.41,42Makarov and Topaler41

provided an insightful analysis and suggested a simple correction
method where the underlying potential energyV(x) in the
calculation is modified to be max{V(x),Vcut} with Vcut chosen
to be an arbitrary number smaller than the potential reactant
well bottom energy. They tested this method for a cubic
metastable potential.41 Above the cross-over temperature, the
results were in close agreement with the exact one irrespective
of the choice ofVcut. However, below the crossover, they found
the results become sensitive to the value ofVcut and are not as
reliable as those calculated by the semiclassical bounce theory.56

Fc(xc) ) 〈F(x(τ))〉c ) - d
dxc

Vc(xc) (9)

Figure 1. Centroid potential of mean force (Vc) and average energy
function (Ec) as a function of the centroidxc compared with the classical
potential, for the asymmetric Eckart barrier given by eq 8, at six
different values ofâ.

TABLE 1: Ratio of QTSTs to the Classical TST, Denoted as
Γ, for the Asymmetric Eckart Barrier of eq 8

â ΓPI-QTST
a ΓCV

b ΓR
c ΓHA

d ΓPL
e ΓSLP

f Γsc
g Γex

h

2 1.17 1.23 1.20 1.2 1.2 1.2 1.2
4 1.97 2.16 2.09 2.0 2.0 2.0 2.0
6 5.69 6.35 6.58 5.2 5.6 5.4 5.3
8 36.6 30.6 50.9 38 44 31 28.1 26

10 544 335 925 1100 1100 655 233 250
12 16600 7620 65000 87000 28000 13100 3710 4100

a Path integral quantum transition state theory (PI-QTST).b Cao and
Voth modification of PI-QTST.c Ramirez modification of PI-QTST.
d QTST2 by Hansen and Andersen.e QTST by Pollak and Liao.f The
best perturbation expansion result calculated by Shao, Liao, and Pollak.
g Semiclassical bounce theory.h Exact result.
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In the present paper, we suggest and more clearly justify the
use of a similar correction method, but with the value ofVcut

always fixed to be that of the potential reactant well bottom
energy. That is, given a potential, the reaction rates are
calculated by applying PI-QTST and its modifications to the
following potential:

with Vr being the reactant well bottom energy.
First, the asymmetric Eckart barrier considered in the previous

section was tested, whereVr ) 0. The potential used in the
simulation was the original potential forx e 0.9 and a Gaussian
tail joined at x ) 0.9 such that the potential and the first
derivative change continuously. Since the value of the potential
at the joining point is very small (about 0.006 ) and the Gaussian
tail decays to zero rapidly, this method of modification is
practically the same as the one suggested by eq 10. Numerical
calculation of the centroid potential of mean forceVc was then
performed as described in section II.B. Figure 2 shows the
potentials for six different values ofâ. Table 2 shows the
calculated values ofΓ, using the three PI-QTST based ap-
proaches with the modified potential. The semiclassical and
exact results given in Table 1 are shown again for reference.
As can be seen in Table 2, the modified PI-QTST results all
show much better agreement with the exact ones.

In this case, the PI-QTST underestimates the reaction rate, a
trend similar to the case of the symmetric Eckart barrier.29,36,37

The CV reaction rate expression corrects the PI-QTST results
in the right direction and provides the best estimates for the
reaction rates below the crossover temperature. The rates
calculated by Ramirez’s expression also differ from the PI-QTST
results in the proper direction, but below the crossover tem-
perature, it results in a much larger overestimation of the rate
than the CV result.

As an additional test case, the same approach was imple-
mented for a cubic metastable potential that was previously
treated by Makarov and Topaler.41 The explicit form of the
model potential is given by

with the same natural units as before. For this potential,xb ) 3
x2 andVb ) 3. Sinceωb ) 1, the crossover value ofâ is equal
to 2π. For the present case also,Vr ) 0. The potential was
modified in a similar way as before by joining the original
potential with a Gaussian tail atx ) 6.3. Four different values
of â below the cross-over temperature were considered. For a
given value ofâ, the number of path integral quasiparticles was
chosen to be 180â/(2π), and the number of primary quasipar-
ticles was set to 10. The staging transformation was made for
each intervening segment as before. The centroid mean force
was calculated in the same way as before by varying the centroid
with the interval of 0.2 in the range from-3 to 12. Figure 3
shows the centroid potential of mean force, and Table 3
compares the calculated reaction rates with the exact ones.56

The rates based on the semiclassical bounce theory have again
been calculated according to the standard method.20,24,54For this
case also, the CV theory gives quite accurate results and
becomes comparable to the semiclassical approximations in the
low temperature limit, except for the case ofâ ) 2π/0.5, where
the deviation seems simply originate from the breakdown of
the stationary phase integration approximation in the centroid
variable space. As can be seen from Figure 3, the centroid

Figure 2. Centroid potential of mean force (Vc) and average energy
function (Ec) as a function of the centroidxc compared with the classical
potential, for the asymmetric Eckart barrier given by eq 8 modified in
the way of eq 10, at six different values ofâ.

TABLE 2: Ratio of PI-QTSTs to the Classical TST for the
Asymmetric Eckart Barrier of Equation 8 Modified by the
Way of Equation 10a

â ΓPI-QTST ΓCV ΓR Γsc Γex

2 1.17 1.23 1.20 1.2
4 1.97 2.19 2.09 2.0
6 5.36 6.65 6.07 5.3
8 26.5 30.7 33.1 28.1 26

10 244 287 346 233 250
12 3490 4140 5560 3710 4100

a The symbols are as described in Table 1. The semiclassical bounce
theory and the exact results for the original potential are provided for
reference.

V(x) ) {V(x), V(x) g Vr

Vr, V(x) < Vr
(10)

Figure 3. Centroid potential of mean force (Vc) and average energy
function (Ec) as a function of the centroidxc compared with the classical
potential, for the metastable cubic potential of eq 11 modified in the
way of eq 10, at four different values ofâ below the crossover
temperature.

V(x) ) 1
2

x2 - 1

9x2
x3 (11)
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potential of mean force cannot be well approximated by a
quadratic function down to the energy comparable tokBT.
Therefore, the result could be improved by using an effective
curvature rather than the one at the barrier top.

The results of the two test cases show that the CV theory
applied to the modified potential of eq 10 predicts reaction rates
comparable to those based on the semiclassical bounce theory
below the cross-over temperature. This implies that when the
choice ofVcut ) Vr is made, the centroid coordinate recovers
its role as the proper reaction coordinate and the action for this
modified potential at the local maximum in the centroid variable
space is very close to the action for the original potential at the
saddle point in the general space of paths. In the following
section, a detailed semiclassical analysis of the centroid density
is provided, which illuminates the source of the error involved
in the original applications of PI-QTST and CV theory to
strongly asymmetric and metastable potentials, as well as the
mechanism of the correction made by the simple remedy
suggested here.

IV. Semiclassical Centroid Density

A. General Expressions.In the present section, a semiclas-
sical expression for the excess centroid density is provided. For
this purpose, eq 2 is rewritten as

where the delta function in the integrand of eq 2 has been
replaced with its Fourier integral expression. The path integra-
tion is over those paths withx(0) ) x(âp) ) x as indicated by
the subscript of the path integral, and the prime in the path
measure indicates that the integration overx has been singled
out. In the semiclassical limit, the dominant contribution of this
integral comes from paths close to the classical paths on the
inverted potential. These paths can be decomposed into

wherexcl(τ) is a classical path on the inverted potential satisfying
the boundary conditionxcl(0) ) xcl(âp) ) x, and δx(τ) is an
arbitrary fluctuation away from the classical path with the
restrictionδx(0) ) δx(âp) ) 0. Including up to the second order
variation of the action with respect toδx(τ), the semiclassical
approximation for the centroid density of eq 12 is given by

whereCl(x) is a classical trajectory starting atx and ending at
the same point after an intervalτ ) âp, and the summation

implies that there can be more than one such trajectory. The
quantity I[xc, Cl(x)] is a centroid-constrained quadratic path
integral, which depends onxc, x, and on the specific classical
orbit chosen. This quantity is defined as

with xcl,0 ) ∫0
âp xcl(τ)/(âp) and

Note that these latter objects also implicitly depend on the value
of x and on the specific classical orbit chosen. The subscript of
0 in the path integral of eq 15 indicates thatδx(τ) starts and
ends at zero. For the differential operator of eq 16, the zero
eigenvalue Green function19,57,58can be defined by the following
relation:

which satisfies the same boundary condition asδx(τ) stated
above. It will be shown later that the explicit expression for
the semiclassical centroid density involves this Green function.
For the time being, it is assumed that the operator of eq 16
does not have a zero eigenvalue so that the Green function
defined by eq 17 is not singular. Later, it will be shown that
the case with zero eigenvalue can be included as a limiting case
in performing the final integration.

Equation 15 can be transformed into an expression involving
a solution of the differential equation of eq 16 and an integration
over the Green function defined by eq 17. The detailed method
of evaluation and the final expression depend on whether or
not the differential operator of eq 16 has a negative eigenvalue.
Appendix A starts with the discretized approximation for eq
15 and then provides a general expression which allows explicit
Gaussian integrations. For the case where all the eigenvalues
are positive, the Gaussian integrations over all the fluctuation
modes can be performed without any ambiguity, and this is
described in Appendix B. The case where there is a single
negative eigenvalue and no zero eigenvalue is treated in
Appendix C. Here greater care must be taken with the order of
integration, and the existence of the result is seen to depend on
the shape of the potential.

The expression in eq 14 shows that a given semiclassical
centroid density, whether it is convergent or divergent, can be
formally decomposed into disjoint components, which we
characterize by the specific classical orbits. All of the nonsta-
tionary classical trajectories must have at least one turning point
because of the boundary conditionxcl(0) ) xcl(âp). Since a given
classical trajectory spends a substantial part of its time near the
turning point(s), the characteristics of each component of the
semiclassical centroid density given by eq 14 can be related to
the nature of the turning points. Thus it is reasonable to
decompose the semiclassical centroid density into components

TABLE 3: Reaction Rate Calculated by PI-QTSTs Modified
in the Way of Equation 10 for the Cubic Metastable
Potential of Equation 11a

â kPI-QTST kCV ksc kex

2π/0.9 1.90 2.16 2.45 1.92 (×10-8)
2π/0.7 4.63 6.47 7.26 6.77 (×10-9)
2π/0.6 3.91 6.24 6.26 5.83 (×10-9)
2π/0.5 3.97 7.61 6.02 5.60 (×10-9)

a The reaction rates are denoted ask with the subscripts having the
same meaning as in Table 1. The semiclassical bounce theory and the
exact results are for the original potential. For the units, refer to the
main text.

Fc(xc) ) x2πp2â
m ∫-∞

∞ dú
2π ∫-∞

∞
dx∫ ‚‚‚ ∫x

D′[x(τ)] ×
exp{-S[x(τ)]/p + iú(x0 - xc)} (12)

x(τ) ) xcl(τ) + δx(τ) (13)

Fc
sc(xc) ) ∫ dx ∑

Cl(x)

e-S[Cl(x)]/p I[xc, Cl(x)] (14)

I[xc, Cl(x)] ) x p2â
2πm∫-∞

∞
dú exp{iú(xcl,0 - xc)} ×

∫ ‚‚‚ ∫0
D′[δx(τ)] exp {- m

2p
∫0

âp
dτ ∫0

âp
dτ′ δx(τ) ×

L(τ, τ′) δx(τ′) + iú
âp

dτ δx(τ)} (15)

L(τ, τ′) ) {- ∂
2

∂τ2
+ 1

m
V′′ (xcl(τ))} δ(τ - τ′) (16)

∫0

âp
dτ′ L(τ, τ′) G(τ′, τ′′) ) ∫0

âp
dτ′ G(τ, τ′) L(τ′, τ′′) )

δ(τ - τ′′) (17)
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associated with the location of the turning points of their
underlying classical trajectories, as follows:

where the subscriptsr, b, and p respectively represent the
reactant, the barrier, and the product parts of the centroid density.
For more quantitative statement, we temporarily introduce
dividing surfaces:drb, which lies between the reactant bottom
and the barrier top, anddbp, which lies between the barrier top
and the product bottom. In most situations where the reaction
rate can be defined, although somewhat arbitrary, these dividing
surfaces can always be found such that, in the classical limit,
the reactant region of the configuration space corresponds to
the lefthand side ofdrb and the product region of the configu-
ration space corresponds to the righthand side ofdbp. Within
the semiclassical approximation, the turning points of the
underlying classical trajectories can play such roles. That is,
the reactant centroid density,Fc,r

sc(xc), is the centroid density
around the classical trajectories with all of their turning points
at the left hand side ofdrb ; and vice-versa for the product
centroid density. The barrier centroid density is the centroid
density around those classical trajectories with the turning points
in betweendrb anddbp, and around those classical trajectories
with turning points on both the lefthand side ofdrb and the
righthand side ofdbp. In the high temperature limit, only the
former contributes to the barrier centroid density, and the latter
appears only below some temperature in most cases and
becomes more dominant as the temperature goes down. The
details of the decomposition depend on the topology of the
potential and the temperature. In the following, the simple
generic case is considered where the regions near the reactant
bottom and the barrier top can be well approximated by
quadratic functions and where the potential changes in a smooth
and continuous fashion between these regions.

B. Reactant Centroid Density.Due to the generic shape of
the potential assumed in the analysis, the reactant centroid
density consists of those classical trajectories which have only
one turning point on the reactant side hill of the inverted
potential. Such trajectories, denoted as Cl(x; r), start at x,
approach (from either side) the top of the reactant side hill of
the inverted potential without crossing it, and then after a time
âp, return to their original positionx, with momentum atτ )
âp equal in magnitude and opposite in sign to that atτ ) 0.
Note that there is only one such trajectory for givenx andâp.
The stationary trajectory sitting at the top of the hill can be
included as a limiting situation of these trajectories. The general
expression is given by

whereI[xc, Cl(x; r)] is the centroid constrained quadratic path
integration defined by eq 15 around the classical trajectory of
Cl(x; r). The subscript ofr denotes that the integration is
performed only forx satisfying the condition ofxcl(âp/2) <
drb. At high enough temperature,âp is small and the starting
pointx should be close to the turning point. Thus, the dominant
contribution to eq 19 is from the reactant bottom region of the
original potential, which can be approximated by the following
harmonic potential:

Then, the classical trajectory on the inverted potential satisfying
the boundary condition is given by

The center of this trajectory, the time average, is given by

and the action along the given trajectory is given by

For the given trajectory, the second derivative of the potential
is constant and the differential operator defined by eq 16
simplifies to

which is independent ofx. This operator does not have any
negative or zero eigenvalues and the centroid-constrained path
integral ofI[xc, Cl(x; r)] in eq 19 can be calculated as described
in Appendix B. For the present case, the explicit expressions
for eqs B3 and B5 can be shown to be

Inserting eqs 22, 25, and 26 into eq B6, and then using the
resulting expression in eq 19 along with eq 23 one can obtain
an expression for the reactant centroid density which involves
Gaussian integration overx. Performing this integration, the
following high temperature expression is obtained:

As the temperature is reduced, the imaginary timeâp becomes
larger and the important classical trajectories sample a larger
region of the potential, away from the reactant minimum.
Eventually, the harmonic approximation for the potential will
break down. However, as long as the curvature of the original
potential increases as the trajectories approach the turning point,
all the eigenvalues of the differential operator of eq 16 remain
positive and the semiclassical centroid density can be evaluated
in the same manner of Appendix B. Although it is not in general
possible to find the explicit expressions for the eigenvalue
spectrum and the Green function, one can usually make an
effective harmonic approximation and the final expression can
be brought into the form of eq 27 with the frequencyωr replaced
with thexc dependent effective frequencyΩr(xc). Note that the
value ofFc,r

sc(xc) decreases in a Gaussian fashion as the centroid
xc is moved away from the reactant minimumxr toward the
barrier top. This feature will be revisited later in the analysis of
the simple correction scheme.

C. Barrier Centroid Density. The barrier centroid density
consists of those classical trajectories which connect the reactant

xcl(τ) ) xr + (x - xr)
cosh(ωr(âp/2 - τ))

cosh(ωr âp/2)
(21)

xcl,0 ) xr + (x - xr)
2

ωrâp
tanh(ωrâp/2) (22)

Scl ) âpVr + mωr(x - xr)
2tanh(ωrâp/2) (23)

L(τ, τ′) ) (- ∂
2

∂τ2
+ ωr

2) δ(τ - τ′) (24)

f(âp) ) 1
ωr

sinh(ωr âp) (25)

γ ) (bp
ωr

)2 (1 - 2
ωr âp

tanh(ωr âp

2 )) (26)

Fc,r
sc(xc) ≈ (ωr âp/2)

sinh(ωr âp/2)
exp{-âVr -

âmωr
2

2
(xc - xr)

2}
(27)

Fc
sc(xc) ) Fc,r

sc(xc) + Fc,b
sc (xc) + Fc,p

sc (xc) (18)

Fc,r
sc(xc) ) ∫r

dx e-S[Cl(x;r)]/p I[xc, Cl(x; r)] (19)

V(x) ≈ Vr +
mωr

2

2
(x - xr)

2 (20)
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and the product sides of the potential. At high enough temper-
ature (smallâp), the only possible trajectories of this kind are
those concentrated near the barrier region. On the other hand,
at temperatures low enough thatâp is larger than the period of
the small harmonic oscillation near the barrier region, periodic
orbits with much lower action exist and the paths near these
orbits represent the dominant contribution to barrier crossing.

1. High Temperature Limit. In this case there is no periodic
orbit crossing the barrier top of the original potential, and the
only possible trajectories are those which start near the local
minimum of the inverted potential, climb up toward either the
reactant or the product side slightly, and then return to their
original position. The constant trajectory sitting at the local
minimum of the inverted potential is included as a limiting case
of these trajectories. The expression for the barrier region
centroid density, therefore, can be written as

where the subscriptb implies that the integration is done only
for x satisfyingdrb < xcl(âp/2) < dbp and I[xc, Cl(x; b)] is the
centroid constrained quadratic path integration defined by eq
15 around the barrier region classical trajectory of Cl(x; b).
Again, it is assumed that the potential in this region can be
well approximated by the inverted parabolic form

Then, for a givenx, there exists a unique classical trajectory on
the inverted potential satisfying the boundary condition as
follows:

This expression becomes singular whenâp ) π/ωb. For the
moment, it is assumed thatâp < π/ωb. The time average of
this trajectory, its centroid, is given by

and the action along the trajectory is given by

For the trajectory of eq 30, the differential operator defined by
eq 16 simplifies to

The eigenvalues of this operator are all positive under the
limitation of âp < π/ωb as stated above, and the centroid
constrained path integrationI[xc, Cl(x)] in eq 28, can be
calculated in the manner of Appendix B. The explicit expres-
sions for eqs B3 and B5 can be calculated to be

Inserting eqs 31, 34, and 35 into eq B6, and then using the
resulting expression in eq 28 along with eq 32, one can obtain
the following expression for the barrier centroid density:

Sinceγ is positive, the Gaussian integration overx is defined
and the resulting centroid density can be written as

This is equal to the exact centroid density for the inverted
harmonic oscillator with frequencyωb.

As has been stated, the derivation of eq 37 is valid only when
âp < π/ωb. For the case whereπ/ωb e âp < 2π/ωb, two
difficulties are encountered in its derivation even though the
final expression of eq 37 can still be used. First, the classical
equation of motion, eq 30 becomes singular atâp ) π/ωb. The
reason is that, at this temperature, the classical trajectory starting
atx always ends up at 2xb - x after half the period time, within
the harmonic approximation, and the only solutions satisfying
the given boundary condition are those trajectories starting atx
) xb. For values ofâp slightly larger than that corresponding
to the half-period, the classical solution of eq 30 can be used
again. Second, whenπ/ωb < âp < 2π/ωb, there appears a
negative eigenvalue, and one cannot perform the path integral
as described in Appendix B; nor can the approach of Appendix
C be used becauseR1 of the unstable mode appearing in eq C1
vanishes, making the resulting centroid density undefined. In
fact, there exists an anharmonic contribution which was not
considered above but resolves the difficulties stated here. That
is, a small participation of the anharmonicity removes the
singularity atâp ) π/ωb and allowsR1 of the unstable mode to
survive. Therefore, the centroid density changes continuously
at the singularity and the method of Appendix C can be used
in the range ofπ/ωb < âp < 2π/ωb as long as other criteria are
satisfied. Thus, while anharmonic contributions from a realistic
potential become crucial to the definition of the centroid density
in this parameter regime, the qualitative behavior of the solution
seems to remain the same as that for higher temperatures. That
is, the final expression for the centroid density is expected to
be well approximated by the form given by eq 37, with the
barrier frequencyωb replaced with anxc-dependent effective
harmonic barrier frequency,Ωb(xc).29

2. Low Temperature Limit. Below the temperature defined
by âp ) 2π/ωb, there appear one or more periodic orbit(s) which
bridge the reactant and the product regions. A feature of these
trajectories is that the action along the trajectory does not depend
on the choice of the initial position. The dominant contribution
comes from the periodic orbit with periodâp, and the semiclas-
sical barrier centroid density is approximated to be

whereSpo is the action along the periodic orbit andI[xc, Cl(x;
po)] is the centroid-constrained path integral defined by eq 15

Fc,b
sc (xc) ) ∫b

dx e-S[Cl(x)]/p I[xc,Cl(x; b)] (28)

V(x) ≈ Vb -
mωb

2

2
(x - xb)

2 (29)

xcl(τ) ) xb + (x - xb)
cos(ωb(τ - âp/2))

cos(ωbâp/2)
(30)

xcl,0 ) xb + (x - xb)
tan(ωbâp/2)

(ωbâp/2)
(31)

Scl ) âpVb - mωb(x - xb)
2 tan(ωbâp/2) (32)

L(τ, τ′) ) (- ∂
2

∂τ2
- ωb

2) δ(τ - τ′) (33)

f(âp) ) 1
ωb

sin(ωbâp) (34)

γ ) (âp
ωb

)2( 2
ωbâp

tan(ωbâp

2 ) - 1) (35)

Fc,b
sc (xc) ≈

x ωbâp

sin(ωbâp) xmâ3p2

2πγ
e-âVb+âmωb

2(xc-xb)2/2 ∫-∞

∞
dx ×

exp{- mâ2p
ωbγ

tan(ωbâp/2) (x - xc)
2} (36)

Fc,b
sc (xc) ≈ (ωbâp/2)

sin(ωbâp/2)
exp{- âVb +

âmωb
2

2
(xc - xb)

2}
(37)

Fc,b
sc (xc) ≈ e-Spo/p ∫po

dx I[xc, Cl(x; po)] (38)
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along the periodic orbit. The integration subscript of po implies
that integration overx are performed along the points in the
given periodic orbit.

For the special case wherex corresponds to a turning point,
x̆po(τ), becomes the zero eigenvalue solution of the differential
operator of eq 16 satisfying the given boundary condition of
x̆po(0) ) x̆po(âp) ) 0. Otherwise,x̆po(τ) does not vanish at the
boundary and the true solution should be obtained through a
perturbative correction. This correction forces the solution to
vanish at the boundary and the resulting eigenvalue becomes
slightly larger than zero in a way analogous to a free particle
confined to a one dimensional box with an infinite wall.19 On
the other hand, this (almost) zero eigenvalue mode has one node,
which implies that there should be a solution without any node
which has a negative eigenvalue.

Given the qualitative feature above, the calculation ofI[xc,
Cl(x; po)] can be made as described in Appendix C, except for
the case wherex̆po(0) ) x̆po(âp) ) 0, which will be included as
a limiting case later. Sincex̆po(0) ) x̆po(bp) and the period of
the orbit is independent of the initial pointx, eq C8 simplifies
to59

whereE is the negative of the energy of the periodic orbit on
the inverted potential. In the present case, the existence of a
negative eigenvalue is equivalent to the condition that d(âp)/
dE < 0. Inserting the expression of eq 39 into eq C6 and then
using the resulting expression in eq 37, the barrier centroid
density can be written as

with γ defined by eq C14 having the following form for the
present case:

Since d(âp)/dE is negative, the condition ofγ < 0, a necessary
condition for the existence of the semiclassical barrier centroid
density, is equivalent to the condition that the quantity within
the curly bracket of eq 41 is positive, which seems to be satisfied
in most cases.29

Equation 40 can be simplified further.59 The differential of
dxpo(0)/|x̆po(0)| can be replaced with dτ, thereby also including
the limiting case ofx̆po(0) ) 0. The rest of the integrand is
independent ofτ. Therefore, after the integration overτ, the
final expression for the barrier centroid density is given by

where both dE/d(âp) andγ are negative.

D. Product Centroid Density.The product centroid density
consists of the classical trajectories which have all the turning
points on the product side hill of the inverted potential.
Representing these trajectories as Cl(x; p), the centroid density
can be expressed as

where all the symbols have meanings analogous to those in the
reactant centroid density of eq 19 and a general situation is
considered such that the product region can have an arbitrary
shape allowing multiple classical trajectories and the product
side of the original potential can be either bounded or
unbounded. While a formal definition of this product centroid
density has been possible, there is no guarantee that it can always
have a convergent value for the case of an unbounded product
state. If the potential decrease is steep, either the path integration
or the final integration overx in eq 43 can be divergent. On the
other hand, if the product side of the original potential is
bounded or it decreases less steeply than a quadratic function,
it always has a convergent value.

For the purpose of the analysis to be made in the following
section, an approximate explicit form for the product centroid
density (when it converges) is useful. Again an effective
harmonic expression is used for this purpose. In analogy with
the reactant centroid expression of eq 27, the final result is given
by

If the value of Ωp(xc) is real, the centroid density of eq 44
represents a bound state case. An imaginary value ofΩp(xc)
with its absolute value being smaller than 2π/âp can represent
the moderately steep unbound state where the centroid density
is still defined. On the basis of the above expression and the
similar expression for the reactant centroid density in eq 27,
the primary factor determining the relative values of these two
terms is the differenceVr - Vp. If this is much different than
zero and positive, the product centroid density will be signifi-
cantly larger than the reactant contribution for any value of the
centroid constraintxc near the location of the barrier top.

E. Analysis.One of the assumptions involved in the PI-QTST
and its improved versions is that the path centroid is a natural
variable that can differentiate the reactant, the barrier, and the
product parts of the partition function. As we shall see, this
assumption is at the heart of the problem when applying PI-
QTST to strongly asymmetric or metastable potentials at low
temperatures using numerical path integral methods to compute
the centroid density. Indeed, in the semiclassical approximation,
such an assumption is not necessary if one decomposes the
centroid density into its constituent components as in the
preceding sections. One can then apply the unified theory of
CV using the semiclassical expressions for the centroid densities
from the previous subsections. Defining the reactant partition
function as

with Fc,r
sc(xc) the reactant centroid density defined in section

f(âp) ) mx̆po(0)2
d(âp)

dE
(39)

Fc,b
sc (xc) ≈ e-Spo/p ∫ dx̆po(0)

1
|x̆po(0)| x dE

d(âp)
â2p
2πγ

×

exp{-
mâ(xpo,0 - xc)

2

2γ } (40)

γ ) m
âp

d(âp)
dE { ∂

∂(âp)
∫0

âp
dτ xpo(τ; âp)2 -

( ∂

∂(âp)
∫0

âp
dτ xpo(τ; âp))2} (41)

Fc,b
sc (xc) ≈ âpe-Spo/p x dE

d(âp)
â2p
2πγ

exp{-
mâ(xpo,0 - xc)

2

2γ }
(42)

Fc,p
sc (xc) ) ∫p

dx ∑
Cl(x;p)

e-S[Cl(x;p)]/p I[xc, Cl(x; p)] (43)

Fc,p
sc (xc) ≈ (Ωp(xc)âp/2)

sinh(Ωp(xc)âp/2)
×

exp{-âVp -
âmΩp(xc)

2

2
(xc - xp)

2} (44)

Zc,r
sc ) x m

2πâp2 ∫-∞
xc
/

dxc Fc,r
sc(xc) (45)
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III.B, the rate expression is given by

where Fc,b
sc (xc

/) is the value of the barrier centroid density
defined in section III.C evaluated at its minimum value.

At high temperatures, the barrier centroid density can be
expressed as eq 37 or its variational version withωb replaced
with Ωb(xc). Therefore,

where Ωb(xc
/) is the frequency of the effective inverted har-

monic function fitting the maximum of the effective barrier
centroid potentialVc(xc) and is seen to be equal toωc,b, defined
in section II. In the low temperature limit where there appears
a periodic orbit, the barrier centroid density of eq 42 can be
used. The resulting expression is

This is of the same form as the Affleck’s rate expression below
the crossover temperature.24,25That is, within the semiclassical
approximation, the unified theory of CV is equivalent to the
bounce theory below the crossover temperature,as long as the
correct barrier part of the centroid density is used.

In actual numerical path integral simulations, different parts
of the centroid density cannot be separated and the calculated
numerical value at a given centroid is the summation from all
the contributions. To better understand this issue, eq 18 can be
rewritten as

Note that this expression in this case is to be evaluated at or
near the barrier (xc ) xc

/). On the basis of the analysis of this
section, one would clearly wish to have the term in brackets as
close to unity as possible in order for any centroid-based
approach such as PI-QTST or CV theory to be accurate for the
rate constant. The first term inside of the bracket should always
be quite small, essentially because this is what defines an
activated rate process. Even in the classical limit, the intrinsic
nonlinearity of the potential in the barrier region causesFc,p

sc (xc
/)

to be much larger thanFc,r
sc(xc

/) which, according to eq 27,
effectively corresponds to the density from a cusped barrier at
x ) xc

/. By contrast, the second term in the bracket in eq 49 is
larger than the first term by a factor of eâ(Vr-Vp), though it will
still be quite small in the classical, or nearly classical, limit.
On the other hand, for strongly exothermic systems at low
temperature, the second term begins to be much larger and
creates the situationFc

sc(xc
/) . Fc,p

sc (xc
/), thus leading to the

serious overestimation of the rate when PI-QTST is used with
a numerically determined centroid density. A similar situation
occurs ifΩp(xc

/)2 in eq 44 becomes effectively negative, as can
be the case for metastable potentials.

The analysis presented above is only valid within the
semiclassical approximation. For the more general situation
where one should go beyond the semiclassical limit, the
separation of the centroid density into different parts is not

possible and the analysis becomes unclear. However, such a
semiclassical perspective provides a framework in which to
understand the simple correction method presented in section
III. That is, within this simple scheme, the lower bound ofVr

in eq 10 seems to be an optimal choice because it does not
change the barrier contribution to the centroid density but
minimizes the spurious product contribution to this quantity
described in the preceding paragraph. Thus a numerically
determined path integral centroid density for the modified
potential becomes much closer to the barrier part of this quantity
as identified semiclassically. The modification procedure there-
fore results in an improvement in the estimation of the reaction
rate using PI-QTST or CV theory in conjunction with numerical
path integral methods. This approach also allows for the
computational benefits of PI-QTST to be preserved in a
straightforward manner. It should be noted that all of the analysis
presented until now assumed that the product state potential
bottom lies lower than that of the reactant state, which
corresponds to an exothermic reaction. In the opposite situation
of an endothermic reaction, similar analysis and conclusion are
possible by reversing the role of the reactant and the product
states. This is discussed in Appendix D.

V. Concluding Remarks

The PI-QTST and its variants29,36,37were tested in this paper
for an asymmetric Eckart barrier and compared with other recent
QTSTs.43-45,55The results show that all the theories overestimate
the reaction rate as has been reported before.41,42 The CV
theory36 is shown to be better than the other approaches in the
low temperature limit. On the other hand, the CV theory is worse
than the semiclassical bounce theory.20,24,54This is in contrast
to the case of symmetric Eckart barrier, where the CV theory
gives results comparable to the bounce theory.36 When a simple
correction method is employed which modifies the potential such
that the product part of the potential never lies lower than the
reactant well bottom potential energy, both PI-QTST and CV
theory again are seen to give results comparable to those based
on the bounce theory.

The present semiclassical analysis of the centroid density has
provided two important findings. First, if only the barrier part
of the centroid density is used, which is possible within the
semiclassical approximation, the CV theory becomes equivalent
to the bounce theory in the low temperature limit. Second, the
effect of the simple correction mechanism to PI-QTST and CV
theory presented in section III can be understood. The correction
does not change the barrier part of the centroid density, but it
reduces the spurious product contribution to the centroid density
which arises in numerical path integral calculations. In this
regard, the choice ofVr as the cutoff value seems to be the
optimal choice because it is the value that makes the contribution
from the product part minimal without affecting the barrier part
[cf. eq 49 and the subsequent discussion].

For multidimensional cases, the correction method and the
semiclassical analysis can be generalized in a straightforward
way as long as the additional nonreactive degrees of freedom
are coupled linearly. If there is nonlinear coupling, the semiclas-
sical analysis becomes more complicated. Although the cor-
rection method of section III may become less straightforward
in this case, the reaction rate calculated by such a method is
still expected to be much closer to the exact one. Further analysis
is needed and this will be the topic of future research. From
the practical perspective, the correction method of section III
seems not to have any difficulty associated with multidimen-
sional situations. However, only applications of this approach
to realistic situations can shed the appropriate light on this issue.

kCV
sc ) min ( ωb

ωc,b
,

2π
ωc,bâp) 1

2πâp

Fc,b
sc (xc

/)

Zc,r
sc

(46)

kCV
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Appendix A

Centroid Constrained Quadratic Path Integration. In the
discretized path approximation, eq 15 can be written as

with

and

There areP - 1 eigenvalues and eigenvectors which satisfy

along with the normalization condition

Then, introducing the following unitary matrix,

and the relevant coordinate transformation

Equation A1 can be simplified to

where

In this expression, eachλk andRk depends onx and the classical
trajectory Cl(x).

By completing the square with respect to eachzk in the
exponent of eq A8, one can reduce the discretized path integral
into independent Gaussian integrations. However, if there is a
negative eigenvalue, the integration over the unstable mode
diverges and the centroid constrained path integration may not
be defined. In this case, in fact, the centroid constraint should
be imposed before integrating over the unstable mode. With
some restrictions, this makes the originally unstable mode stable
and a convergent expression for the centroid density can be
obtained. The case where all the eigenvalues are positive is
treated in Appendix B, and the case where there is one negative
eigenvalue is considered in Appendix C.

Appendix B

All Positive Eigenvalues.In this case, the integrations over
eachzk in eq A8 can be made by completing the squares. The
resulting expression contains an exponential of a quadratic
expression in terms ofú, which can again be integrated over,
leading to

where

The exact value ofI[xc, Cl(x)] is obtained in the limitP f ∞.
In this limit, according the theorem of Gel’fand and Ya-
glom,18,19,60

where f(τ) is the homogeneous solution of the differential
operator of eq 16

satisfying the boundary condition off(0) ) 0 andf′(0) ) 1. On
the other hand, in the same continuum limit, the quantity of eq
B2 becomes the following integration of the Green function57,58

defined by eq 17:

which is positive for the present case. Then, the exact expression
of the centroid constrained path integral of eq B1 is given by

Appendix C:

One Negative Eigenvalue.The case where there is one
negative eigenvalue and all other eigenvalues are positive is
considered here. Let the negative eigenvalue beλ1. The Gaussian

I[xc, Cl(x)] ≈ x p2â
2πm∫-∞

∞
dú exp{iú(xcl,0 - xc)} ×

( m
2πεp)P/2 ∫ dy1 ‚‚‚ ∫ dyP-1 exp{- m

2εp
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P
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integrations over other modes with positive eigenvalues can be
made first in eq A8. The resulting expression is

where

In eq C1, the integration overú should be performed first, which
is equivalent to imposing the centroid constraint first. The
resulting expression is

where it has been assumed thatR1 is nonzero andγP ) γ′P +
(âp)2R1/(Pλ1) is the same quantity previously defined by eq B2.
Sinceλ1 is negative andγ′P defined by eq C2 is positive, the
integration overz1 in eq C3 can be performed only when the
following condition is satisfied:

Performing integration overz1 in eq C3 assuming the
condition of eq C4,

where the quantity within the square root of the preexponential
factor is positive. In the limitP f ∞, as is the case of Appendix
B, this becomes

which has the same form as eq B6 with the same definitions of
f(âp) and γ given by eqs B3 and B5. The difference here is
that bothf(âp) andγ are negative.

It is important to clarify the conditions of existence of eq C6
again. The derivation of eq C3 required that bothγ′P andR1 are
nonzero. In fact, as long asR1 is nonzero, the integration over
z1 can be made even ifγ′P is zero, which has the same form as
eq C5. Therefore, the only required conditions are that (i)R1 *

0 and that (ii)γ < 0. Note thatf(âp) is negative due to the
condition that there is only one negative eigenvalue and no zero
eigenvalue. The condition of (i) implies that motion along the
unstable mode should accompany a change in the centroid
position.

The quantities off(âp) and γ appearing in eq C6 can be
expressed in terms of the underlying classical trajectory. First,
f(âp) is considered. One can show that the differential operator
of eq 16, along the given classical trajectoryxcl(τ), hasx̆cl(τ) as
its homogeneous solution, although this may not satisfy the
given boundary condition. In terms of the linear combination
of this solution and the second independent solution generated
from this, one can construct the following homogeneous
solution:18,19,57-59

One can show that this is the solution of the differential operator
of eq 16 satisfying the boundary condition18,19,60 of f(0) ) 0
and ḟ(0) ) 1. Special care should be taken in performing the
integration overτ′ in eq C7. Whenτ ) τ0 with x̆cl(τ0) ) 0, the
quantity of eq C7 can be defined as the limiting situation. When
τ > τ0, the integration can be defined only on a contour which
goes around the singularity atτ0 by gaining a small imaginary
term. Due to this nature of the integration contour, the integral
in eq C7 can have a negative value. With this point being
clarified,

where the second equality is the special case (k ) 0) of the
following general identity:

with Tcl(E, x) ) âp andE being the negative of the classical
energy for the motion on the inverted potential satisfying the
following relation:

The verification of eq C9 can be made through a change of
integration variable fromτ into x and then performing a partial
integration. Care should be taken in taking the limit such that
the divergent quantities cancel out.

Second, the quantity ofγ can be expressed in a similar way.
For this purpose, the Green function defined by eq 17 should
be obtained first. Through the Wronski construction,19,57-59 one
can show that

whereτ< ) min(τ, τ′) andτ> ) max(τ, τ′). The integration of

I[xc, Cl(x)] ≈ 1

2π xâp

ε x m

2πεp
(∏

k)2

P-1

λk
-1/2) ∫-∞

∞
dú ∫-∞

∞ ×

dz1 exp{-
γ′Pú2

2mâ
+ iú(xcl,0 - xc + R1z1) -

mλ1

2εp
z2

1} (C1)

γ′P )
(âp)2

P (R2
2

λ2
+ ‚‚‚ +

RP-1
2

λP-1
) (C2)

I[xc, Cl(x)] ≈ xâp

ε x m

2πεp
(∏

k)2

P-1

λk
-1/2) ×

e-mâ(xcl,0-xc)2/(2γP) ∫-∞

∞
dz1 ( mâ

2πγ′P)
1/2

×

exp{-
mλ1γP

2εpγ′P (z1 +
R1(âp)2(xcl,0 - xc)

Pλ1γP
)2} (C3)

γP < 0 (C4)

I[xc, Cl(x)] ≈ {âp

ε
(∏

k)1

P-1

λk
-1)

mâ

2πγP
}1/2

×

exp{-
mâ(xcl,0 - xc)

2

2λP
} (C5)

I[xc, Cl(x)] ) x mâ2p

2πf(âp)γ
exp{-

mâ(xcl,0 - xc)
2

2γ } (C6)

f(τ) ) x̆cl(0)x̆cl(τ) ∫0

τ dτ′
x̆cl(τ′)2

(C7)

f(âp) ) x̆cl(0)x̆cl(âp) ∫0

âp dτ′
x̆cl(τ′)2

) mx̆cl(0)x̆cl(âp)
∂Tcl(E,x)

∂E
(C8)

∫0

âp
dτ

xcl(τ)k

x̆cl(τ)2
) m

∂

∂E∫0

Tcl(E,x)
dτxcl(τ; E, x)k (C9)

m
2

x̆cl(τ)2 - V(xcl(τ)) ) -E (C10)

G(τ, τ′) ) x̆cl(τ)x̆cl(τ′) ∫0

τ< dτ1

x̆cl(τ1)
2 ∫τ>

âp dτ2

x̆cl(τ2)
2
/∫0

âp dτ3

x̆cl(τ3)
2

(C11)
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this Green function given by eq C11 overτ andτ′ leads to

Using eq C9 withk ) 1, 2, one can show that eq C12 can be
written as

Therefore,γ defined by eq B5 is given by

Appendix D

Case of an Endothermic Reaction.In this case, a similar
analysis can be made by reversing the roles of the reactant and
the product states in the semiclassical analysis of section IV.
Then, in the strongly endothermic case, the following situation
can occur:

so that Fc
sc(xc

/) . Fc,b
sc (xc

/) according to eq 49. That is, the
mixing-in of the reactant part and the barrier part of the centroid
density can lower the effective barrier, which can result in the
overestimation of the reaction rate when using numerical path
integral methods to calculate the overall centroid density in the
barrier region. This error can be corrected in the following way.
For the calculation of the reactant partition function, the centroid
potential of mean force for the original potential would be used.
For the calculation of the centroid density in the barrier region,
however, the simulation would be performed for the following
modified potential:

whereVp is the bottom value of the product part of the potential.
The PI-QTST or CV theory given by eq 5 can then be applied
using the reactant partition function calculated from the original
potential with the centroid potential of mean force for the barrier
contribution to the formula calculated with the modified potential
of eq D2. This procedure will result in a reaction rate which
satisfies detailed balance and becomes comparable to the
semiclassical results in the low temperature limit.
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âp
dτ ∫0

âp
dτ′G(τ, τ′) ) ∫0

âp
dτ

xcl(τ)2

x̆cl(τ)2
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(∫0

âp
dτ

xcl(τ)

x̆cl(τ)2)2

/(∫0

âp dτ
x̆cl(τ)2) (C12)

∫0

âp
dτ ∫0

âp
dτ′G(τ, τ′) ) m

∂Tcl(E, x)

∂E { ∂

∂Tcl
∫0

Tcl ×

dτ xcl(τ; Tcl, x)2 - ( ∂

∂Tcl
∫0

Tcl dτ xcl(τ; Tcl, x))2} (C13)

γ ) m
âp

∂Tcl(E, x)

∂E { ∂

∂Tcl
∫0

Tcl dτ xcl(τ; Tcl, x)2 -

( ∂

∂Tcl
∫0

Tcl dτ xcl(τ; Tcl, x))2} (C14)

Fc,r
sc(xc

/) . Fc,b
sc (xc

/) (D1)

V(x) ) {V(x), V(x) g Vp

Vp, V(x) < Vp
(D2)
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